70 resultados para Visual cortex

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the visual cortex, as elsewhere, N-methyl-d-aspartate receptors (NMDARs) play a critical role in triggering long-term, experience-dependent synaptic plasticity. Modifications of NMDAR subunit composition alter receptor function, and could have a large impact on the properties of synaptic plasticity. We have used immunoblot analysis to investigate the effects of age and visual experience on the expression of different NMDAR subunits in synaptoneurosomes prepared from rat visual cortices. NMDARs at birth are comprised of NR2B and NR1 subunits, and, over the first 5 postnatal weeks, there is a progressive inclusion of the NR2A subunit. Dark rearing from birth attenuates the developmental increase in NR2A. Levels of NR2A increase rapidly (in <2 hr) when dark-reared animals are exposed to light, and decrease gradually over the course of 3 to 4 days when animals are deprived of light. These data reveal that NMDAR subunit composition in the visual cortex is remarkably dynamic and bidirectionally regulated by sensory experience. We propose that NMDAR subunit regulation is a mechanism for experience-dependent modulation of synaptic plasticity in the visual cortex, and serves to maintain synaptic strength within an optimal dynamic range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At early stages in visual processing cells respond to local stimuli with specific features such as orientation and spatial frequency. Although the receptive fields of these cells have been thought to be local and independent, recent physiological and psychophysical evidence has accumulated, indicating that the cells participate in a rich network of local connections. Thus, these local processing units can integrate information over much larger parts of the visual field; the pattern of their response to a stimulus apparently depends on the context presented. To explore the pattern of lateral interactions in human visual cortex under different context conditions we used a novel chain lateral masking detection paradigm, in which human observers performed a detection task in the presence of different length chains of high-contrast-flanked Gabor signals. The results indicated a nonmonotonic relation of the detection threshold with the number of flankers. Remote flankers had a stronger effect on target detection when the space between them was filled with other flankers, indicating that the detection threshold is caused by dynamics of large neuronal populations in the neocortex, with a major interplay between excitation and inhibition. We considered a model of the primary visual cortex as a network consisting of excitatory and inhibitory cell populations, with both short- and long-range interactions. The model exhibited a behavior similar to the experimental results throughout a range of parameters. Experimental and modeling results indicated that long-range connections play an important role in visual perception, possibly mediating the effects of context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between brain activity and reading performance was examined to test the hypothesis that dyslexia involves a deficit in a specific visual pathway known as the magnocellular (M) pathway. Functional magnetic resonance imaging was used to measure brain activity in dyslexic and control subjects in conditions designed to preferentially stimulate the M pathway. Dyslexics showed reduced activity compared with controls both in the primary visual cortex and in a secondary cortical visual area (MT+) that is believed to receive a strong M pathway input. Most importantly, significant correlations were found between individual differences in reading rate and brain activity. These results support the hypothesis for an M pathway abnormality in dyslexia and imply a strong relationship between the integrity of the M pathway and reading ability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We optically imaged a visual masking illusion in primary visual cortex (area V-1) of rhesus monkeys to ask whether activity in the early visual system more closely reflects the physical stimulus or the generated percept. Visual illusions can be a powerful way to address this question because they have the benefit of dissociating the stimulus from perception. We used an illusion in which a flickering target (a bar oriented in visual space) is rendered invisible by two counter-phase flickering bars, called masks, which flank and abut the target. The target and masks, when shown separately, each generated correlated activity on the surface of the cortex. During the illusory condition, however, optical signals generated in the cortex by the target disappeared although the image of the masks persisted. The optical image thus was correlated with perception but not with the physical stimulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In subjects suffering from early onset strabismus, signals conveyed by the two eyes are not perceived simultaneously but in alternation. We exploited this phenomenon of interocular suppression to investigate the neuronal correlate of binocular rivalry in primary visual cortex of awake strabismic cats. Monocularly presented stimuli that were readily perceived by the animal evoked synchronized discharges with an oscillatory patterning in the γ-frequency range. Upon dichoptic stimulation, neurons responding to the stimulus that continued to be perceived increased the synchronicity and the regularity of their oscillatory patterning while the reverse was true for neurons responding to the stimulus that was no longer perceived. These differential changes were not associated with modifications of discharge rate, suggesting that at early stages of visual processing the degree of synchronicity rather than the amplitude of responses determines which signals are perceived and control behavioral responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Revealing the layout of cortical maps is important both for understanding the processes involved in their development and for uncovering the mechanisms underlying neural computation. The typical organization of orientation maps in the cat visual cortex is radial; complete orientation cycles are mapped around orientation singularities. In contrast, long linear zones of orientation representation have been detected in the primary visual cortex of the tree shrew. In this study, we searched for the existence of long linear sequences and wide linear zones within orientation preference maps of the cat visual cortex. Optical imaging based on intrinsic signals was used. Long linear sequences and wide linear zones of preferred orientation were occasionally detected along the border between areas 17 and 18, as well as within area 18. Adjacent zones of distinct radial and linear organizations were observed across area 18 of a single hemisphere. However, radial and linear organizations were not necessarily segregated; long (7.5 mm) linear sequences of preferred orientation were found embedded within a typical pinwheel-like organization of orientation. We conclude that, although the radial organization is dominant, perfectly linear organization may develop and perform the processing related to orientation in the cat visual cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To elucidate the roles of visual areas V1 and V2 and their interaction in early perceptual processing, we studied the responses of V1 and V2 neurons to statically displayed Kanizsa figures. We found evidence that V1 neurons respond to illusory contours of the Kanizsa figures. The illusory contour signals in V1 are weaker than in V2, but are significant, particularly in the superficial layers. The population averaged response to illusory contours emerged 100 msec after stimulus onset in the superficial layers of V1, and around 120–190 msec in the deep layers. The illusory contour response in V2 began earlier, occurring at 70 msec in the superficial layers and at 95 msec in the deep layers. The temporal sequence of the events suggests that the computation of illusory contours involves intercortical interaction, and that early perceptual organization is likely to be an interactive process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proper understanding of processes underlying visual perception requires information on the activation order of distinct brain areas. We measured dynamics of cortical signals with magnetoencephalography while human subjects viewed stimuli at four visual quadrants. The signals were analyzed with minimum current estimates at the individual and group level. Activation emerged 55–70 ms after stimulus onset both in the primary posterior visual areas and in the anteromedial part of the cuneus. Other cortical areas were active after this initial dual activation. Comparison of data between species suggests that the anteromedial cuneus either comprises a homologue of the monkey area V6 or is an area unique to humans. Our results show that visual stimuli activate two cortical areas right from the beginning of the cortical response. The anteromedial cuneus has the temporal position needed to interact with the primary visual cortex V1 and thereby to modify information transferred via V1 to extrastriate cortices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human area V1 offers an excellent opportunity to study, using functional MRI, a range of properties in a specific cortical visual area, whose borders are defined objectively and convergently by retinotopic criteria. The retinotopy in V1 (also known as primary visual cortex, striate cortex, or Brodmann’s area 17) was defined in each subject by using both stationary and phase-encoded polar coordinate stimuli. Data from V1 and neighboring retinotopic areas were displayed on flattened cortical maps. In additional tests we revealed the paired cortical representations of the monocular “blind spot.” We also activated area V1 preferentially (relative to other extrastriate areas) by presenting radial gratings alternating between 6% and 100% contrast. Finally, we showed evidence for orientation selectivity in V1 by measuring transient functional MRI increases produced at the change in response to gratings of differing orientations. By systematically varying the orientations presented, we were able to measure the bandwidth of the orientation “transients” (45°).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When the illumination of a visual scene changes, the quantity of light reflected from objects is altered. Despite this, the perceived lightness of the objects generally remains constant. This perceptual lightness constancy is thought to be important behaviorally for object recognition. Here we show that interactions from outside the classical receptive fields of neurons in primary visual cortex modulate neural responses in a way that makes them immune to changes in illumination, as is perception. This finding is consistent with the hypothesis that the responses of neurons in primary visual cortex carry information about surface lightness in addition to information about form. It also suggests that lightness constancy, which is sometimes thought to involve “higher-level” processes, is manifest at the first stage of visual cortical processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurons in primary visual cortex (area 17) respond vigorously to oriented stimuli within their receptive fields; however, stimuli presented outside the suprathreshold receptive field can also influence their responses. Here we describe a fundamental feature of the spatial interaction between suprathreshold center and subthreshold surround. By optical imaging of intrinsic signals in area 17 in response to a stimulus border, we show that a given stimulus generates activity primarily in iso-orientation domains, which extend for several millimeters across the cortical surface in a manner consistent with the architecture of long-range horizontal connections in area 17. By mapping the receptive fields of single neurons and imaging responses from the same cortex to stimuli that include or exclude the aggregate suprathreshold receptive field, we show that intrinsic signals strongly reveal the subthreshold surround contribution. Optical imaging and single-unit recording both demonstrate that the relative contrast of center and surround stimuli regulates whether surround interactions are facilitative or suppressive: the same surround stimulus facilitates responses when center contrast is low, but suppresses responses when center contrast is high. Such spatial interactions in area 17 are ideally suited to contribute to phenomena commonly regarded as part of "higher-level" visual processing, such as perceptual "popout" and "filling-in."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual information in primates is relayed from the dorsal lateral geniculate nucleus to the cerebral cortex by three parallel neuronal channels designated the parvocellular, magnocellular, and interlaminar pathways. Here we report that m2 muscarinic acetylcholine receptor in the macaque monkey visual cortex is selectively associated with synaptic circuits subserving the function of only one of these channels. The m2 receptor protein is enriched both in layer IV axons originating from parvocellular layers of the dorsal lateral geniculate nucleus and in cytochrome oxidase poor interblob compartments in layers II and III, which are linked with the parvocellular pathway. In these compartments, m2 receptors appear to be heteroreceptors, i.e., they are associated predominantly with asymmetric, noncholinergic synapses, suggesting a selective role in the modulation of excitatory neurotransmission through the parvocellular visual channel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions between stimulus-induced oscillations (35-80 Hz) and stimulus-locked nonoscillatory responses were investigated in the visual cortex areas 17 and 18 of anaesthetized cats. A single square-wave luminance grating was used as a visual stimulus during simultaneous recordings from up to seven electrodes. The stimulus movement consisted of a superposition of a smooth movement with a sequence of dynamically changing accelerations. Responses of local groups of neurons at each electrode were studied on the basis of multiple unit activity and local slow field potentials (13-120 Hz). Oscillatory and stimulus-locked components were extracted from multiple unit activity and local slow field potentials and quantified by a combination of temporal and spectral correlation methods. We found fast stimulus-locked components primarily evoked by sudden stimulus accelerations, whereas oscillatory components (35-80 Hz) were induced during slow smooth movements. Oscillations were gradually reduced in amplitude and finally fully suppressed with increasing amplitudes of fast stimulus-locked components. It is argued that suppression of oscillations is necessary to prevent confusion during sequential processing of stationary and fast changing retinal images.